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I. GINZBURG LANDAU THEORY OF SUPERCONDUCTORS PART II

The Ginzburg-Landau (GL) theory of superconductivity is one of the most useful tools for doing
quantitative calculations.

A. Boundary Conditions on the GL ψ(r)

What boundary conditions (BC) apply in an inhomogeneous superconductor? Enforce the condition
that no super-current flows through the interface with a non-superconducting material (e.g. vacuum),

n̂ · J⃗s = 0, where n̂ is unit vector in the outward normal direction from the superconductor. With

J⃗s = e∗|ψ|2v⃗s one could naively let ψ(r) go to zero at the interface to satisfy the condition. However

this would imply that n̂× J⃗s = 0, meaning that the screening current parallel to the interface is also
zero, which is not reasonable for a superconductor/vacuum interface, for example.

P. G. de Gennes came up with a more useful and flexible boundary condition. Using the expression

for the current density J⃗s =
e∗

m∗Re
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, one can note that:

n̂ · J⃗s = e∗
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. Now if we make

n̂ ·
(
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)
ψ = i

bψ, with b real and positive, then we automatically satisfy the boundary condition.

How to interpret this constraint? In the absence of a vector potential and in one dimension, it boils
down to
∂ψ
∂x |x=0 = − 1

bψ|x=0, where the boundary is assumed to be at x = 0. The length scale b is called the
extrapolation length.
In the case of an insulator, b = ∞, and there is no suppression of the order parameter at the S/I interface.
In the case of a normal metal b is finite and the order parameter is suppressed at the S/N interface,
linearly extrapolating to zero at a distance b in to the normal metal.
For a ferromagnet, one can take b = 0 so that the order parameter is suppressed to zero at the SC/FM
interface.

B. GL Coherence Length

Starting from the GL equation with A⃗ = 0, one can divide through by α and ψ∞ to obtain

f − f3 − ℏ2

2m∗α ▽2 f = 0, where f = ψ/ψ∞ is the dimensionless order parameter (and not to be confused
with the free energy density!).
The pre-factor on the Laplacian must have the dimensions of length squared, and so we define the

Ginzburg-Landau coherence length as ξ2GL ≡ ℏ2

2m∗|α| . As temperature approaches Tc, α goes to zero and

the GL coherence length diverges.

Solutions to the GL equation: f − f3 − ξ2GL ▽2 f = 0 for small perturbations from f = 1 yield

one-dimensional solutions of the form f = 1 − e±
√
2x/ξGL , showing that ξGL is the “healing length” of

the order parameter.

We then compared ξGL to the (temperature independent) BCS coherence length ξ0 = ℏvF
π∆(0) . The

definition of the BCS coherence length arises from a treatment of the nonlocal electrodynamics of super-
conductors, very similar to Pippard’s treatment discussed in Lecture 3. The two coherence lengths are
related as
ξGL(T )
ξ0

= π
2
√
3

λLHc(0)
λeff (T )Hc(T ) .

This shows that the two length scales are roughly comparable at zero temperature, at least in the clean



2

local limit.
Some typical values for the BCS coherence length (based on values of vF and ∆(0)) are ξ0 = 1.25 µm
for Aluminum, ξ0 = 94 nm for Niobium, and ξ0 = 2.6 nm for the cuprate superconductor YBCO.

C. Electrodynamics in the Clean and Dirty Local Limits

We considered the Drude model for local electrodynamics in which J = σE and σ = σ1 − iσ2. σ1
measures the dissipative part of the complex conductivity. That is, it measures the current that flows
in phase with the electric field. σ2 measures the reactive part of the complex conductivity. That is, it
measures the current that flows in quadrature with the electric field.
We found that in the clean limit ℓMFP >> ξ0 that λeff (0) ≈ λL because almost all of the oscillator
strength in σ1 condenses in to the delta function at zero frequency.
In the dirty limit ℓMFP << ξ0 only a fraction of the oscillator strength condenses into the delta function

at zero frequency, and one finds λeff (0) ≈ λL

√
ξ0

ℓMFP
, and the effective screening length can be quite

long. This is the case for superconductors like amorphous Mo-Ge, granular Al, and NbN.

D. Ginzburg-Landau κ Parameter

The dimensionless GL κ parameter is defined as

κ ≡ λeff (T )

ξGL(T )
.

It is found that κ is nearly temperature independent near Tc.
Metals like Al have κ << 1 and are called type-I superconductors.
Cuprates and other “high-Tc” superconductors have κ >> 1 and are called type-II superconductors. We
shall see why these distinctions are made in the next lecture.

Some typical values of κ are as follows.
Type I (κ < 1/

√
2)

For Al, λL ≈ 16 nm, ξ0 ≈ 1.25 µm, giving κ = 0.01.
For Sn, λL ≈ 35 nm, ξ0 ≈ 300 nm, giving κ = 0.11.
Type II (κ > 1/

√
2)

For YBCO, λL ≈ 150 nm, ξ0 ≈ 2.6 nm, giving κ = 58.


